Simulations

for Cluster-based Cosmology

Astronomy Colloquium @LIneA, Webinar Colloquium Camille Avestruz U. Michigan, LSA Collegiate Fellow

Energy budget of our universe (mostly unknown!) (E = mc²)

Galaxy clusters probe cosmology

Number of galaxy clusters probe cosmology

Number of galaxy clusters probe cosmology

Number of galaxy clusters probe cosmology

sses from andra X-ray scope

Dark Matter 23

rk Energy

WEIGH A GALAXY CLUSTER

Galaxy Cluster Mass Vikhlinin+09

imgflip.com

0.001

Proxy: Gas measurements tell us about the mass

Test the proxy with simulations

temperature

P∝T * density

radius

Test the proxy with simulations

temperature

Test the proxy with simulations

Problem: Mass proxies are proxies with assumptions

Problem: Mass proxies are proxies with assumptions

Galaxy clusters' dynamical state ties with systematics

Combining observables can improve constraints

Larger datasets from surveys: Galaxy Clusters ... Getting lower masses and further objects

Larger datasets from surveys: Galaxy Clusters ... Getting lower masses and further objects

Past Surveys

Larger datasets from surveys: Galaxy Clusters ... Getting more objects for better statistics

Larger datasets from surveys: Galaxy Clusters ... Getting more objects for better statistics

Start to incorporate multiwavelength approaches

LoCuSS Clusters

Each simulation has a (slightly) different approach

Quantify differences/robustness of models predictions with Local Linear Regression (Evrard14)

 Describe simulated galaxy cluster population: Mass conditioned estimates of slope, normalization and property covariance.

Example: Satellite Statistics to Inform Optically-Selected Cluster Counts

Early vs. Late forming halos split in the PDF

Shapes sensitive to accretion and cosmology, impacting mass-observable relations

Shape/morphology as a key relaxedness criterion

Bulk asymmetry measures \rightarrow unrelaxed

(e.g. Mohr+1993, Jeltema+05)

 $\textsf{Peakedness/Cool-core} \rightarrow \textsf{relaxed}$

(e.g. Vikhlinin+07, Bohringer+10)

Varied shapes in mass-limited Omega500 sample

2.9

//.X

13. X

Varied shapes in mass-limited Omega500 sample

1.9 17: x

1.8

2.0

21: x

0.3

201: x

2.9

153: x

80: x

2.3 2.9

63: x

16: x

106: x

53: x

98. 1

Nelson+14

1.2

2.6

2.4

4.4

Varied morphology in mass-limited Omega500 sample

Varied morphology in mass-limited Omega500 sample

Developed hydro code, halo finder

PI: Enabled science and resources for simulations

Ran the first NR box,Developed merger tree+db

Ran CSF, Developed tracer particle capability

Ran later CSF, AGN boxes, database

Developed initial AGN module

Shape and accretion study of Omega500 clusters

Shape: Axis ratio

Accretion Rate (modified Diemer+Kravtsov14)

$$\Gamma_{200m}(a_i) = \frac{\log(M_{200m_i}) - \log(M_{200m_0})}{\log(a_i) - \log(a_0)}$$
Max Merger Ratio
Timescale
$$3 \qquad 1$$

Accretion rate and accretion mode matter

More Elliptical

Accretion rate and accretion mode matter

More Elliptical

Accretion rate and accretion mode matter

More Elliptical

A characteristic timescale for shape relaxation

A characteristic timescale for shape relaxation

Connecting accretion and shape to scatter in MOR

Mass

Residual varies monotonically with accretion rate

Rounder clusters are hotter with higher residuals

Groundwork for "baryon pasting" prescriptions

Halo property: Mass, accretion rate, shape, etc.

Observable: Integrated property, profile, etc.

Baryon Pasters

H. Miyatake (Nagoya)

K. Osato (Tokyo)

M. Shirasaki (NAOJ)

D. Nagai (Yale)

H. Aung (Yale)

E. Lau (Miami)

C. Avestruz (Michigan)

A. Hearin (ANL)

B. Nord (FNAL)

G. Evrard (Michigan)

A. Farahi (Michigan)

(UofA)

R. Makiya (Kavli IPMU)

(Yale)

Baryon Pasters

- Still under development, but we already have a prototype pipeline.
 - C++ with Python wrapper
 - MPI capability
- Modular code design
 - Interface to inputs/outputs
 - Different SAMs for pasting baryonic profiles
 - Instrumental-specific noise properties

Baryon Pasters: Some Science Goals

- Accurate modeling of selection functions
- Seek for (physically) reasonable (multi-variate) mass-observable relations
- Modification to cosmic shear, cluster/galaxy lensing, galaxy clustering
- [Your area of interest here?]

Baryon Pasters: Planned Efforts

- Mass accretion rate and shape dependence (Machado, CA+)
- Calibrate SAM of gas down to CGM (Osato+)
- Modification of DM profile due to baryonic effects (Shirasaki, Huang+)
- Paint gas (and galaxies) onto filaments (Aung, Green+)
- Unified models of stars and gas (Hearin, Makiya+)
- Gaseous substructure (TBD)

Baryon pasting example: SZ effect

Shaw+10 model (Pressure profile model calibrated from simulations)

Will be used in upcoming HSCxPlanck analysis

Baryon pasting example: SZ effect (backlight)

Baryon pasting example

Input: Lightcone simulation

First X-ray and SZ maps from LSST Simulations

Courtesy: Hironao Miyatake, Andrew Hearin, Erwin Lau - Baryon Pasting efforts

"Baryon pasting" application

Halo property: Mass, accretion rate, DM density

Observable: Tx, Ysz

Compare with Shaw model

Weak lensing mass estimate has model dependence

Example: Testing bias of z=1 MXXL halos with different concentration assumptions

Weak lensing mass calibration

- Stacked mass fitting vs. individual fit in hierarchical framework
- Test observational effects, e.g. miscentering, selection...
- Model profile dependence, e.g. radial range, c-M assumptions...
- Profile independent measures, e.g. aperture mass

Larger datasets from surveys: Galaxy Clusters ... Getting more objects for better statistics

Larger datasets from surveys: Galaxy Clusters ... Getting more objects for better statistics

Hacking for LSST - Cluster Mass Calibration Pipeline

LIneA

representation!

Configuration is given in sampleconfig.py. In particular, this specified which simmeader to use to read the simulation data.

Training in data and computation

software carpentry

Teaching basic lab skills for research computing

Syllabus

The Unix Shell

- Files and Directories
- History and Tab Completion
- · Pipes and Redirection
- Looping Over Files
- · Creating and Running Shell Scripts
- Finding Things
- Reference...

Version Control with Git

- Creating a Repository
- Recording Changes to Files: add , commit , ...
- Viewing Changes: status, diff,...
- Ignoring Files
- Working on the Web: clone , pull , push , ...
- Resolving Conflicts
- Open Licenses
- · Where to Host Work, and Why
- Reference...

Programming in Python

- Using Libraries
- · Working with Arrays
- Reading and Plotting Data
- Creating and Using Functions
- Loops and Conditionals
- Defensive Programming
- Using Python from the Command Line
- Reference...

**At your department

**At professional meetings (AAS, SACNAS, ...)

Summary

- We'll need a confluence of N-body, hydro and semi-analytic modeling to fully leverage the next generation of cosmology experiments
- A galaxy cluster's mass accretion history is a critical component in developing models that paint baryons onto DM only simulations
- Community code development will likely play a key role in the era of LSST

